x	0	3	5	9
g(x)	-2	-1	$-\frac{1}{8}$	$-\frac{1}{20}$
g'(x)	4	√8	$\sqrt{3}$	$\frac{3}{4}$

- **BC 1**: The functions f and g are twice differentiable. Selected values of g(x) and g'(x) are given in the table above. The function f is defined by $f(x) = 2 + \int_0^{3x} g(t) dt$.
- (A) Explain why there must be a number c, for 0 < c < 9, such that $g'(c) = \frac{1}{3}$.
- (B) Evaluate $\int_0^3 40x f'''(x) dx.$
- (C) Using a right Riemann sum with three subintervals indicated in the table above, approximate the length of the curve of g(x) from x = 0 to x = 9.
- (D) Let $P_n(x)$ denote the nth degree Taylor polynomial for f about x=0. Find $P_2(x)$.
- (E) Consider the geometric series $\sum_{n=0}^{\infty} ar^n$ whose first three terms are defined by the polynomial $P_2(x)$ found in part (D). Find the sum of this series when $x=\frac{1}{6}$, or show that the series diverges.