FRQ BC 1 2020 Solutions

x	0	3	5	9
g(x)	-2	-1	$-\frac{1}{8}$	$-\frac{1}{20}$
g'(x)	4	$\sqrt{8}$	$\sqrt{3}$	$\frac{3}{4}$

- **BC 1**: The functions f and g are twice differentiable. Selected values of g(x) and g'(x) are given in the table above. The function f is defined by $f(x) = 2 + \int_0^{3x} g(t) dt$.
- (A) Explain why there must be a number c, for 0 < c < 9, such that $g'(c) = \frac{1}{3}$.

average rate: $\frac{g(3)-g(0)}{3-0} = \frac{(-1)-(-2)}{3} = \frac{1}{3}$ g is twice differentiable $\Rightarrow g$ is continuous The Mean Value Theorem guarantees on $\begin{bmatrix} 0,3 \end{bmatrix}$ which is within $\begin{bmatrix} 0,9 \end{bmatrix}$ there is a value c such that $g'(c) = \frac{1}{3}$

(B) Evaluate $\int_0^3 40x f'''(x) dx.$

$$f'(x) = g(3x)(3) = 3g(3x) \Rightarrow f''(3x) = 9g'(3x)$$

$$\int x f'''(x) dx = x f''(x) - \int f''(x) dx = x f''(x) - f'(x)$$

$$u = x \Rightarrow du = 1$$

$$dv = f'''(x) dx \Rightarrow v = f''(x)$$

$$40 \int_{0}^{3} x f'''(x) dx = 40 \left[x f''(x) - f'(x) \right]_{0}^{3} = 40 \left[3 f''(3) - f'(3) \right] - 40 \left[(0) f''(0) - f'(0) \right]$$

$$= 40 \left[27 g'(9) - 3g(9) \right] - 40 \left[-3g(0) \right] = 40 \left[27 \left(\frac{3}{4} \right) - 3 \left(-\frac{1}{20} \right) \right] - 40 \left[-3(-2) \right]$$

$$= 40 \left[\left(\frac{81}{4} \right) + \left(\frac{3}{20} \right) \right] - 40 \left[6 \right] = \left[40 \left(\frac{81}{4} \right) + 40 \left(\frac{3}{20} \right) \right] - 40 \left[6 \right] = 810 + 6 - 240 = 576$$

FRQ BC 1 2020 Solutions

x	0	3	5	9
g(x)	-2	-1	$-\frac{1}{8}$	$-\frac{1}{20}$
g'(x)	4	$\sqrt{8}$	$\sqrt{3}$	$\frac{3}{4}$

- **BC 1**: The functions f and g are twice differentiable. Selected values of g(x) and g'(x) are given in the table above. The function f is defined by $f(x) = 2 + \int_0^{3x} g(t)dt$.
 - (C) Using a right Riemann sum with three subintervals indicated in the table above, approximate the length of the curve of g(x) from x = 0 to x = 9.

$$L = \int_{0}^{9} \sqrt{1 + (g'(x))^{2}} \approx 3\sqrt{1 + (g'(3))^{2}} + 2\sqrt{1 + (g'(5))^{2}} + 4\sqrt{1 + (g'(9))^{2}}$$
$$= 3\sqrt{1 + (\sqrt{8})^{2}} + 2\sqrt{1 + (\sqrt{3})^{2}} + 4\sqrt{1 + (\frac{3}{4})^{2}} = 3\sqrt{9} + 2\sqrt{4} + 4\sqrt{\frac{25}{16}} = 9 + 4 + 5 = 18$$

(D) Let $P_n(x)$ denote the nth degree Taylor polynomial for f about x=0. Find $P_2(x)$.

$$f(x) = 2 + \int_{0}^{3x} g(t)dt \Rightarrow f'(x) = 3g(3x) \Rightarrow f''(x) = 9g'(3x)$$

$$f(0) = 2 \Rightarrow f'(0) = 3(-2) = -6 \Rightarrow f''(x) = 9(4) = 36$$

$$P_{2}(x) = f(0) + f'(0)x + \frac{1}{2}f''(0)x^{2} = 2 - 6x + 18x^{2}$$

(E) Consider the geometric series $\sum_{n=0}^{\infty} ar^n$ whose first three terms are defined by the polynomial $P_2(x)$ found in part (D). Find the sum of this series when $x = \frac{1}{6}$, or show that the series diverges.

$$\sum_{n=0}^{\infty} ar^n = 2 - 6x + 18x^2 \Rightarrow a = 2, r = \frac{-6x}{2} = \frac{18x^2}{-6x} = -3x$$

$$x = \frac{1}{6} \Rightarrow \sum_{n=0}^{\infty} 2(-3x)^n = \sum_{n=0}^{\infty} 2\left(-3\left(\frac{1}{6}\right)\right)^n = \sum_{n=0}^{\infty} 2\left(\frac{-1}{2}\right)^n = \frac{2}{1 - \left(-\frac{1}{2}\right)} = \frac{2}{\frac{3}{2}} = \frac{4}{3}$$